Distinct intracellular calcium profiles following influx through N- versus L-type calcium channels: role of Ca2+-induced Ca2+ release.

نویسندگان

  • Keith Tully
  • Steven N Treistman
چکیده

Selective activation of neuronal functions by Ca(2+) is determined by the kinetic profile of the intracellular calcium ([Ca(2+)](i)) signal in addition to its amplitude. Concurrent electrophysiology and ratiometric calcium imaging were used to measure transmembrane Ca(2+) current and the resulting rise and decay of [Ca(2+)](i) in differentiated pheochromocytoma (PC12) cells. We show that equal amounts of Ca(2+) entering through N-type and L-type voltage-gated Ca(2+) channels result in significantly different [Ca(2+)](i) temporal profiles. When the contribution of N-type channels was reduced by omega-conotoxin MVIIA treatment, a faster [Ca(2+)](i) decay was observed. Conversely, when the contribution of L-type channels was reduced by nifedipine treatment, [Ca(2+)](i) decay was slower. Potentiating L-type current with BayK8644, or inactivating N-type channels by shifting the holding potential to -40 mV, both resulted in a more rapid decay of [Ca(2+)](i). Channel-specific differences in [Ca(2+)](i) decay rates were abolished by depleting intracellular Ca(2+) stores with thapsigargin or by blocking ryanodine receptors with ryanodine, suggesting the involvement of Ca(2+)-induced Ca(2+) release (CICR). Further support for involvement of CICR is provided by the demonstration that caffeine slowed [Ca(2+)](i) decay while ryanodine at high concentrations increased the rate of [Ca(2+)](i) decay. We conclude that Ca(2+) entering through N-type channels is amplified by ryanodine receptor mediated CICR. Channel-specific activation of CICR provides a mechanism whereby the kinetics of intracellular Ca(2+) leaves a fingerprint of the route of entry, potentially encoding the selective activation of a subset of Ca(2+)-sensitive processes within the neuron.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Intracellular Calcium Profiles Following Influx Through N- Versus L-Type Calcium Channels: Role of Ca -Induced Ca Release

Tully, Keith and Steven N. Treistman. Distinct intracellular calcium profiles following influx through Nversus L-type calcium channels: role of Ca -induced Ca release. J Neurophysiol 92: 135–143, 2004; 10.1152/jn.01004.2003. Selective activation of neuronal functions by Ca is determined by the kinetic profile of the intracellular calcium ([Ca ]i) signal in addition to its amplitude. Concurrent ...

متن کامل

Gestational hypothyroidism-induced changes in L-type calcium channels of rat aorta smooth muscle and their impact on the responses to vasoconstrictors

Objective(s): Thyroid hormones play an essential role in fetal growth and maternal hypo-thyroidism which leads to cardiovascular deficiency in their offspring.  Considering this, we intended to investigate the impact of gestational hypothyroidism on offspring vascular contractibility and possible underlying mechanisms. Materials and Methods: Hypothyroidism was induced in female rats by administ...

متن کامل

Distinct Intracellular Calcium Profiles Following Influx Through N vs L Type Calcium Channels: Role of Ca2+-induced Ca2+ relea

Selective activation of neuronal functions by Ca is determined by the kinetic profile of the intracellular calcium ([Ca]i) signal, in addition to its amplitude. Concurrent electrophysiology and ratiometric calcium imaging were used to measure transmembrane Ca current and the resulting rise and decay of [Ca]i in differentiated pheochromocytoma (PC12) cells. We show that equal amounts of Ca enter...

متن کامل

The role of intracellular free calcium in motor neuron disease.

The intracellular calcium (Ca2+) concentrations of motoneurons can be altered by the influx of Ca2+ into the cell by the opening of voltage-dependent Ca2+ channels and ligand-gated channels linked to Ca2+ influx, especially by the N-methyl-D-aspartate (NMDA) type of excitatory amino acid receptor. Intracellular Ca2+ concentration is also affected by the release of Ca2+ buffered in mitochondria ...

متن کامل

P30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain

Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 1  شماره 

صفحات  -

تاریخ انتشار 2004